Two New Alkaloids from Incarvillea sinensis

by Da-Sen Huang^a)^b), Wei-Dong Zhang^a)^c), Yue-Hu Pei^b), Xiao-Yang Peng^a), Zheng-Sheng Huang^a)^b), Hui-Liang Li^{*a}), and Yun-Heng Shen^{*a})

^a) Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China

(phone: +86-21-25070387; fax: +86-21-25070387; e-mail: faranli@hotmail.com)

^b) Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, P. R. China

^c) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, P. R. China

Two new alkaloids, incarvines E (1) and F (2), were isolated from the EtOH extract of the whole plant of *Incarvillea sinensis*. Their structures were elucidated by spectroscopic methods, including 1D-and 2D-NMR.

Introduction. – Incarvillea sinensis LAM (Bignoniaceae), Chinese name 'Jiaohao (Kakko)' or 'Tougucao', is a wild plant which is prevalent in northern China, and the dried whole plant has been historically used for treating rheumatism and relieving pain in traditional Chinese medicine [1]. Until now, about 20 alkaloids have been isolated from this plant [2-4], some of which exhibit significant bioactivities, such as incarvillateine, a new dimeric monoterpene alkaloid containing a characteristic cyclobutane ring, has been found to produce more potent pain-relieving activity than morphine in a formalin-induced pain response [5]. So, it is worthwhile to study the constituents of *I. sinensis*. In this article, we report two new alkaloids from the EtOH extract of *I. sinensis*.

Results and Disscusion. – The $CHCl_3$ -soluble fraction of the EtOH extract of *I*. *sinensis* was purified by repeated column chromatography to afford compounds 1 and 2. Their structures were identified on the basis of NMR and mass spectrometric data.

Compound **1** was obtained as a yellow oil, and exhibited a positive reaction to *Dragendorff*'s reagent. The molecular formula of **1** was determined to be $C_{21}H_{35}NO_3$ by the *quasi*-molecular ion $[M + H]^+$ at m/z 350.2698 in the HR-Q-TOF-MS (positive-ion mode; calc. 350.2695). The ¹³C-NMR spectrum (*Table*) showed 21 C-atom signals, including five Me, six CH₂, and seven CH groups, as well as three quaternary C-atoms. Among the three quaternary C-atoms, one is an ester CO group according to the chemical shift at $\delta(C)$ 167.5. The 1D-NMR and HSQC data indicate the presence of two olefinic H-atoms at $\delta(H)$ 6.67 (t, J = 6.0, 1 H; $\delta(C)$ 141.9) and $\delta(H)$ 5.38 (t, J = 5.4, 1 H; $\delta(C)$ 124.6), one MeN group at $\delta(H)$ 2.72 (s), $\delta(C)$ 43.9, four Me groups at $\delta(H)$ 0.90 (d, J = 7.2), $\delta(C)$ 16.1, respectively, one OCH₂ group at $\delta(H)$ 4.39–4.42 (m), $\delta(C)$ 58.9, and an O-bearing CH group at $\delta(H)$ 5.24–5.26 (m), $\delta(C)$ 75.0. The key HMBCs are shown in *Fig. 1*. Based on the above spectral data, the skeleton of **1** is quite similar

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

	1 ¹)		2 ¹)	
	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$
$H_a - C(1)$	54.7	3.23 - 3.25(m)	54.5	3.27 - 3.28(m)
$H_b - C(1)$		2.40 - 2.44(m)		2.41 - 2.50 (m)
$H_a - C(3)$	55.4	3.06 - 3.08 (m)	55.2	2.50 - 2.60 (m)
$H_b-C(3)$		2.56 - 2.57 (m)		3.10 - 3.12 (m)
H-C(4)	28.4	1.70 - 1.71 (m)	28.1	1.69 - 1.73 (m)
H-C(5)	36.7	2.50 - 2.52 (m)	36.5	2.50 - 2.60 (m)
$H_a - C(6)$	29.8	2.40 - 2.44 (m)	29.7	2.35 - 2.36(m)
$H_b-C(6)$		1.90 - 1.94 (m)		1.69 - 1.73 (m)
H-C(7)	75.0	5.24 - 5.26 (m)	74.1	5.26 - 5.28(m)
H-C(8)	40.9	2.05 - 2.08 (m)	40.9	2.07 - 2.09(m)
H-C(9)	43.3	2.34 - 2.38(m)	42.9	2.34 - 2.36(m)
MeN	43.9	2.72(s)	43.7	2.74(s)
Me-C(4)	16.1	0.90 (d, J = 7.2)	16.5	0.93 (d, J = 6.6)
Me-C(8)	14.3	0.96 (d, J = 7.8)	14.3	0.97 (d, J = 7.2)
C(1')=O	167.5	-	167.8	-
Me(2')	12.2	1.78(s)	12.4	1.82(s)
C(3')	127.7	-	128.7	-
H-C(4')	141.9	6.67 $(t, J = 6.0)$	140.2	6.64 $(t, J = 7.2)$
CH ₂ (5')	26.8	2.24 - 2.28 (m)	26.4	2.34 - 2.36(m)
CH ₂ (6')	37.9	2.10 - 2.12 (m)	39.3	2.26 - 2.28(m)
Me(7')	16.5	1.64(s)	18.7	2.15(s)
C(8')	137.5		158.8	
H-C(9')	124.6	5.38(t, J = 5.4)	116.0	5.64 (s)
$CH_2(10')$ or $C(10')=O$	58.9	4.39 - 4.42 (m)	166.7	-
C(1")			70.5	
$H_a - C(2'', 6'')$			33.2	1.77 - 1.81 (m)
$H_{b}-C(2'',6'')$				1.44 - 1.47 (m)
$H_a - C(3'', 5'')$			29.8	1.87 - 1.90 (m)
$H_{b}-C(3'',5'')$				1.50 - 1.53 (m)
H-C(4")			67.2	3.98 - 4.00(m)
CH ₂ (7")			39.3	1.83 - 1.91 (m)
CH ₂ (8")			60.9	4.31-4.33 (m)

Table. ¹H- and ¹³C-NMR Data (600 and 150 MHz, resp.; CDCl₃) of **1** and **2**. δ in ppm, J in Hz.

Fig. 1. Structure and key HMBCs $(H \rightarrow C)$ of $\mathbf{1}^1$)

1) Arbitrary numbering. For systematic names, see *Exper. Part.*

to that of incarvine D, which containes an alkaloid moiety and a monoterpene moiety [6]. The only difference is the presence of an additional C=C bond at C(8') (δ (C) 137.5) and H-C(9')¹) (δ (C) 141.9) in **1** instead of the C-C bond at H-C(8') (δ (C) 29.4) and CH₂(9') (δ (C) 39.7) in incarvine D. So the C-atom resonances at δ (C) 54.7, 55.4, 28.4, 36.7, 29.8, 75.0, 40.9, 43.3, 43.9, 16.1, and 14.3 could be assigned to C(1), C(3) to C(9), MeN, Me-C(4), and Me-C(8) of the monoterpene alkaloid incarvilline, the absolute configuration of which was determined by X-ray-analysis [7] and *Mosher*'s method [8]. The remaining NMR signals of the monoterpene moiety also were attributed (*Table*). Therefore, the structure of **1** was established, and named incarvine E.

Compound 2 was obtained as a yellow oil and showed a positive reaction to Dragendorff's reagent. The ESI-MS showed signals at m/z 506.5 ($[M + H]^+$) and m/z528.5 ($[M + Na]^+$) in the positive-ion mode, and m/z 504.4 ($[M - H]^-$) and m/z 540.4 $([M + Cl]^{-})$ in the negative-ion mode, corresponding to a molecular formula $C_{29}H_{47}NO_6$. The C-atom resonances at $\delta(C)$ 54.5, 55.2, 28.1, 36.5, 29.7, 74.1, 40.9, and 42.9 suggested the presence of an incarvilline moiety. Furthermore, ten C-atom resonances at $\delta(C)$ 167.8, 166.7, 158.8, 140.2, 128.7, 116.0, 39.3, 26.4, 18.7, and 12.4 indicated the presence of two ester CO and two Me groups, two trisubstituted C=Cbonds, and two CH₂ groups, which disclosed the presence of a monoterpene moiety identified as *Hildebrandt*'s acid as previously reported [9]. The remaining eight Catoms, including one CH₂O group (δ (C) 60.9), five CH₂ groups (δ (C) 39.3, δ (C) 33.2 × 2, $\delta(C)$ 29.8 × 2), one O-bearing CH moiety ($\delta(C)$ 67.2), and one O-bearing sp³ quaternary C-atom ($\delta(C)$ 70.5), indicated the presence of an isorengyol moiety determined previously [10]. The connection among incarvilline, Hildebrandt's acid, and isorengyol moiety, were proved by HMBC correlations (Fig. 2). Comparison with the literature data of incarvine B [11] revealed that compound 2 is the isorengyol ester of incarvine B. Thus, the structure of compound 2 was determined, and named incarvine F.

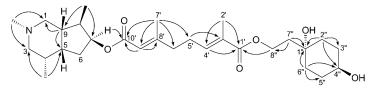


Fig. 2. Structure and key HMBCs $(H \rightarrow C)$ of 2^{1})

Experimental Part

General. TLC: *HSGF254* silica gel plates (10–40 μm, *Yantai*, P. R. China). The alkaloids were detected under UV (254, 365 nm) light and with *Dragendroff* spray reagent. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh, *Yantai*, P. R. China), silica gel *H* (10–40 μm, *Qingdao*, P. R. China), and *Sephadex LH-20* (*Pharmacia Co. Ltd.*). Optical rotations: *Perkin-Elmer 341* polarimeter. CD Spectra: *JASCO J-810* instrument. NMR Spectra: in CDCl₃, on *Bruker AVANCE II 600* NMR, for ¹H-NMR at 600 MHz, and ¹³C-NMR at 150 MHz; chemical shifts in ppm with TMS as internal standard. ESI-MS Spectra: *Varian MAT-212* mass spectrometer. TOF-MS: *Q-Tof micro YA019* mass spectrometer.

Plant Material. The whole plants of *Incarvillea sinensis* were collected in Shanxi Province, P. R. China, in August 2007, and identified by Prof. *Han-Chen Zheng*, Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai. A voucher specimen (No. 20070801) was

deposited with the Herbarium of the School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.

Extraction and Isolation. The air-dried whole plants (15 kg) of *I. sinensis* was powered and extracted with 80% and 95% EtOH (301) under reflux. After removal of EtOH under reduced pressure, the aq. brownish syrup (61) was successively partitioned with petroleum ether (PE), AcOEt, CHCl₃, and BuOH. The CHCl₃ extract (68 g) was subjected to SiO₂ (200–300 mesh) CC, eluting with gradient CHCl₃/MeOH (20:0, 20:1, 10:1, 5:1, 2:1, 0:1) to yield six fractions. *Fr.* 2 was repeatedly chromato-graphed on a SiO₂ column eluting with cyclohexane/CHCl₃/Et₂NH (6:4:1 \rightarrow 5:3:1) and *Sephadex LH-20* to afford compounds **1** (21 mg) and **2** (6 mg).

Incarvine E (= (4R*,4aS*,6R*,7S*,7aR*)-Octahydro-2,4,7-trimethyl-1H-cyclopenta[c]pyridin-6-yl (2E,6E)-8-Hydroxy-2,6-dimethylocta-2,6-dienoate; **1**). Yellow oil. $[a]_D^{2D} = -6.3$ (c = 0.66, CHCl₃). IR (KBr): 3398, 2964, 2935, 1702, 1652, 1540. ¹H- and ¹³C-NMR: *Table*. HMBC: *Fig. 1*. ESI-MS (pos.): 350.4 ($[M+H]^+$), 372.3 ($[M+Na]^+$). ESI-MS (neg.): 348.3 ($[M-H]^-$). ESI-Q-TOF-MS (pos.): 350.2698 ($[M+H]^+$, C₂₁H₃₆NO₃⁺; calc. 350.2695).

Incarvine F = [-1/2] (trans-1,4-Dihydroxycyclohexyl)ethyl] 8-[(4R*,4aS*,6R*,7S*,7aR*)-2,4,7-Trimethyloctahydro-1H-cyclopenta[c]pyridin-6-yl] (2E,6E)-2,6-Dimethylocta-2,6-dienedioate;**2** $). Yellow oil. <math>[a]_{20}^{20} = -6.6 (c = 1.0, \text{CHCl}_3)$. IR (KBr): 3392, 2969, 2932, 1737, 1716, 1558. ¹H- and ¹³C-NMR: Table. HMBC: *Fig.* 2. ESI-MS (pos.): 506.5 ($[M + H]^+$), 528.5 ($[M + Na]^+$). ESI-MS (neg.): 504.4 ($[M - H]^-$), 540.4 ($[M + Cl]^-$). ESI-Q-TOF-MS (pos.): 506.3510 ($[M + H]^+$, $C_{29}H_{48}NO_6^+$; calc. 506.3482).

The work was supported by the *Program for Changjiang Scholars and Innovative Research Team in University* (PCSIRT), *NCET Foundation*, *NSFC*(30725045), *National 863 Program* (2006AA02Z338), *China Postdoctoral Science Foundation* (20070410711), '973' *Program of China* (2007CB507400), *Shanghai Leading Academic Discipline Project* (B906), and in part by the *Scientific Foundation of Shanghai China* (07DZ19728, 06DZ19717, 06DZ19005).

REFERENCES

- [1] Y.-M. Chi, W.-M. Yan, J.-S. Li, Chin. J. Chin. Mat. Med. 1990, 15, 262.
- [2] Y.-M. Chi, M. Nakamura, X.-Y. Zhao, T. Yoshizawa, W.-M. Yan, F. Hashimoto, T. Nohara, S. Sakurada, *Nat. Prod. Res. Dev.* (in Chinese) 2005, 17, 362.
- [3] Y.-M. Chi, M. Nakamura, X.-Y. Zhao, T. Yoshizawa, W.-M. Yan, F. Hashimoto, J. Kinjo, T. Nohara, *Chem. Pharm. Bull.* 2005, 53, 1178.
- [4] Y.-M. Chi, M. Nakamura, X.-Y. Zhao, T. Yoshizawa, W.-M. Yan, F. Hashimoto, Y.-C. Chi, J. Kinjo, T. Nohara, J. Asian Nat. Prod. Res. 2007, 9, 115.
- [5] M. Nakamura, Y.-M. Chi, W.-M. Yan, Y. Nakasugi, T. Yoshizawa, N. Irino, F. Hashimoto, J. Kinjo, T. Nohara, S. Sakurada, J. Nat. Prod. 1999, 62, 1293.
- [6] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, Phytochemistry 1997, 46, 763.
- [7] Y.-M. Chi, W.-M. Yan, D.-C. Chen, H. Noguchi, Y. Iitaka, U. Sankawa, *Phytochemistry* 1992, 31, 2930.
- [8] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, M. Yamashita, N. Marubayashi, *Chem. Pharm. Bull.* 1997, 45, 495.
- [9] A. J. Birch, M. Kocor, N. Sheppard, J. Winter, J. Chem. Soc. 1962, 1502.
- [10] C. Kobler, F. Effenberger, Tetrahedron 2006, 62, 4823.
- [11] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, Phytochemistry 1995, 39, 1485.

Received January 23, 2009